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e Entities are nodes in the graph, all connected to the
trending entity

e More edges are drawn by stories co-occurrences

e Edge weights are calculated from the cosine
similarities of the entities' embeddings

e The teleport vector is instantiated with scores
produced via entity salience

e The ranking of entities is eventually produced by
running Personalized PageRank

Experimental Results

Method “Relevant” & “Somewhat Relevant” as Gold Labels “Relevant” as Gold Label

MAP P@1 P@3 NDCG@5 NDCG@10 MRR MAP P@1 P@3 NDCG@5 NDCG@10 MRR
Frequency 0.098 0.262 0.224 0.168 0.233 0.448 0.097 0.208 0.177 0.179 0.242 0.382
Co-Occurrence 0.359 0.477 0.295 0.441 0.479 0.604 0.441 0.416 0.221 0.486 0.515 0.528
Stories Embeddings 0.210 0.208 0.161 0.238 0.287 0.373 0.237 0.148 0.110 0.253 0.299 0.295
Reciprocal Rank 0.418 0.523 0.291 0.460 0.508 0.630 0.488 0.430 0.219 0.501 0.542 0.541
Salience (max) 0.497 0.570 0.394 0.556 0.612 0.727 0.555 0.456 0.286 0.593 0.640 0.622
PPR 0.519 0.644 0.391 0.586 0.637 0.773% 0.6054 0.5644 0.282 0.639% 0.678% 0.686%

Supervised Solution: Feature Engineering with Learning to Rank

e Entities are transformed into vectors of features

e Features are derived from different signals: E @ Supervised Solution - eIl =
Position andse G Feature Engineering [® @ @ D 9 ]

Ranked Contextual Entities
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Méthid “Relevant” & “Somewhat Relevant” as Gold Labels “Relevant” as Gold Label
MAP P@1 P@3 NDCG@5 NDCG@10 MRR MAP P@1 P@3 NDCG@5 NDCG@10 MRR
Salience (max) 0.474 0.569 0.364 0.526 0.584 0.714 0.534 0.462 0.251 0.566 0.616 0.604
PPR 0.495 0.646 0.364 0.565 0.617 0.767 0.591 0.554 0.256 0.622 0.659 0.665
LTR 0.5744% 0.708 0.47242 0.629° 0.68242 0.815% 0.609 0.569 0.3084% 0.654% 0.696° 0.710%
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