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Introduction
The Document Aboutness Task

Succinct Representation of a

Document’s Subject Matter (Bruza, AIR '96) Goal

▷ N-Grams (Turney, IR ‘00) 
▷ Sentences (Mihalcea, EMNLP ‘04)

▷ Terms of Dictionary (Paranjpe, CIKM ‘08)

▷ Keywords  (Liu, EMNLP ‘14)

Limitations
(Hasan, ACL ‘14) 

Classical
Aboutness
Representation
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The Document Aboutness Task

Goal

▷ N-Grams (Turney, IR ‘00) 
▷ Sentences (Mihalcea, EMNLP ‘04)

▷ Terms of Dictionary (Paranjpe, CIKM ‘08)

▷ Keywords  (Liu, EMNLP ‘14)

▷ Interpretation

Limitations
(Hasan, ACL ‘14) 

Classical
Aboutness
Representation

Input Document

Jaguar

or

Jaguar_(felin) Jaguar_Cars?
Aboutness

▷ Overgeneration
▷ Infrequency
▷ Redundancy



[...] errors could be addressed
using background knowledge.

(Hasan, ACL ‘14) 

Adding semantics into the aboutness representation

Introduction
Through a Semantic Representation



Entity ∊ Knowledge Base

Maradona won against Mexico

Diego_Maradona Mexico_National_
Football_Team

Semantic aboutness representation

▷ Deployment of Entity Annotators
     (Cucerzan, EMNLP '07) and many others

1.

Introduction
Through a Semantic Representation



▷ Relevance of an Entity

Semantic Aboutness Representation

1.

2.

Entity ∊ Knowledge Base

▷ Deployment of Entity Annotators
     (Usbeck, WWW ‘15)

1.

Salience (Class or Score)Salience

+
Entity

Entity Salience Extraction
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Entity Salience
Our Solution

▷ Three-Stage Framework for 
Entity Salience Extraction

▷ In-Depth Feature Engineering:

○ Syntactic:
■ Sentence Ranking
■ Dependency Trees

○ Semantic:
■ Entity Annotations
■ Relatedness Graph

▷ Improves current solutions
○ Up to +9.8% 

▷ The first publicly available API 



Entity Salience
General Structure

1. CoreNLP
2. TextRank
3. WAT

Document 
Enrichment

Feature
Generation

Classification

Classify entities in

Salient or Non-Salient

Input Document

Salient Entities

1. Basics
2. Syntactic
3. SemanticFe

at
ur

es
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1. Document Enrichment

Entity Salience
Three-Stage Framework

▷ CoreNLP  (Manning, ACL '14)
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Sentence Splitting
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Module

Sentence Splitting

Tokenization

POS-Tagging

Named Entity Recognition

Dependency Parsing

Coreference

1. Document Enrichment

Entity Salience
Three-Stage Framework

Images via

http://corenlp.run

▷ CoreNLP  (Manning, ACL '14)



Normalized
Token Overlap

■ Weights =

1. Document Enrichment

Entity Salience
Three-Stage Framework

▷ TextRank  (Mihalcea, EMNLP '04)

○ Graph-Based Summarizer

▷ CoreNLP  (Manning, ACL '14)

Sentences

■ Nodes = Sentences

○ Sentence Ranking via PageRank

0.51

0.12

0.42

0.63

0.21

0.83



1. Document Enrichment

Entity Salience
Three-Stage Framework

▷ WAT  (Piccinno, SIGIR ‘14)

 ○ Annotates them with 
Wikipedia Entities

▷ CoreNLP  (Manning, ACL '14)

Named Entities + Proper/Common Nouns
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○ Releatedness Graph
■ Nodes = Entities
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1. Document Enrichment

Entity Salience
Three-Stage Framework

▷ WAT  (Piccinno, SIGIR ‘14)

 ○ Annotates them with 
Wikipedia Entities

▷ CoreNLP  (Manning, ACL '14)

Named Entities + Proper/Common Nouns

Barack_Obama

George_Walker
Bush

United_States
Capitol
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■ Weights = Wikipedia                  
                          Jaccard In-Links



Tokens, POS Tags, Dependency Relations, Coreference Chains, Sentence Ranks, Wikipedia Entities and their Relatedness

1.

Entity Salience
Three-Stage Framework

Document Enrichment

2. Feature Generation



2. Feature Generation

1.

▷ Standard Entity Features
○ Frequency
○ Positions
○ ...

▷ CMU-Google Features
○ POS-Tags, Coreference Freq.
○ PageRank on a graph whose  

weights are based on co-occ.
○ ...

▷ Syntactic Features
○ Statistics on Sentence Ranks
○ Frequency/Positions of 

Dependency Relations
○ ...

▷ Semantic Features
○ Statistics on annotations

(coherence, commonness)

○ Graph Centralities on 
Relatedness Graph

○ Relatedness over Positions
○ ...



Salience Classification3.

1.

Entity Salience
Three-Stage Framework

Document Enrichment

2. Feature Generation

Entity Feature Vectors

(Chen, SIGKDD '16)

...

Salient Entities

Tokens, POS Tags, Dependency Relations, Coreference Chains, Sentence Ranks, Wikipedia Entities and their Relatedness
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● Experimented on the 

        Dataset (110,000 news, millions of entities)

1. Proprietary Tools
2. Small Feature Space + Linear Classifier

▷ CMU-Google System (Dunietz, EACL ‘14)

Experiments
Competitors & Datasets

Limitations

● Only features based on position and 
frequency of entities

● Not publicly available

Re-implemented
○ Proprietary modules substituted 

with open-source tools
■ WAT +

1. Supervised Entity Annotator
2. Large Feature Space + Decision Tree

▷ SEL (Trani, DocEng ‘16)

● Experimented on the 

        Dataset (365 news, 4747 entities)

Limitations
● No comparison with CMU-Google System
● Benchmark on small dataset
● Not publicly available



Experiments
Results

Dataset

System Micro

P R F1

CMU-Google
(Dunietz, EACL ‘14)

60.5 63.5 61.5

CMU-Google-ours 58.8 62.6 60.7

SWAT 62.2 63.0 62.6

New York Times
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Dataset

+9%

Independence from position
of salient entities

Goal

New York Times
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Conclusion & Future Work

▷ We proved that the deployment of semantic 
knowledge eliminates the limitations 

        described by (Hasan, ACL ‘14)

▷ We aim to
○ Improve SWAT

■ Deployment of WAT 2.0 & Deep Learning

○ Ranking of Entities

○ Other datasets (not only news)

○ Ranking of Entities

○ Other datasets (not only news)

○ Deploy our system for other applications
■ Entity Annotation of Query

■ Document Similarity

■ …

■ Please, suggest your favourite one!



Thanks!
Any questions?


